铁碳合金,是以铁和碳为组元的二元合金。铁基材料中应用多的一类——碳钢和铸铁,就是一种工业铁碳合金材料。钢铁材料适用范围广阔的原因,首先在于可用的成分跨度大,从近于无碳的工业纯铁到含碳4%左右的铸铁,在此范围内合金的相结构和微观组织都发生很大的变化;另外,还在于可采用各种热加工工艺,尤其金属热处理技术,大幅度地改变某一成分合金的组织和性能。
碳素钢有各种分类方法,如按化学成分(即以含碳量)可分为低碳钢、中碳钢和高碳钢。按钢的品质可分为普通碳素钢和优质碳素钢。按用途则又可分为碳素结构钢、碳素工具钢。此外,还可以按冶炼方法和所保证的性能要求等来进行分类。
普通碳素结构钢又称普通碳素钢,对含碳量、性能范围以及磷、硫和其它残余元素含量的限制较宽。在中国和某些国家根据交货的保证条件又分为三类:甲类钢(A类钢)是保证力学性能的钢。乙类钢(B类钢)是保证化学成分的钢。特类钢(C类钢)是既保证力学性能又保证化学成分的钢,常用于制造较重要的结构件。中国生产和使用多的是含碳量在0.20%左右的A3钢(甲类3号钢),主要用于工程结构。
有的碳素结构钢还添加微量的铝或铌(或其它碳化物形成元素)形成氮化物或碳化物微粒,以限制晶粒长大,使钢强化,节约钢材。在中国和某些国家,为适应专业用钢的特殊要求,对普通碳素结构钢的化学成分和性能进行调整,从而发展了一系列普通碳素结构钢的专业用钢(如桥梁、建筑、钢筋、压力容器用钢等)。
铁碳合金相图的应用
毛坯成型方法有:铸造、焊接、锻压。其中锻压是这三种毛坯成型中综合力学性能的一种。锻压工艺是将坯料加热至奥氏体区域,使其有良好的塑性和低的抗变形性能,在施加外力的情况下改变其尺寸、结构、力学性能的加工方法。在这里可以知道,锻压是碳钢在完全奥氏体化的情况下,其塑性好,有较低的抗变形能力。因此,要使其完全奥氏体化,其温度控制合理,才能够达到要求。从图看线1、线3,分别代表的是亚共析钢、过共析钢组织随温度变化其性能会改变的情况。当亚共析钢加热到727℃时,P开始向A转变。当继续加热至GS的交点a时,F完全转变成A了。此时,塑性变形能力较好,抗变形能力小。温度继续上升,其塑性变形会有提高,但是温度过高,施加压力过程中,会使坯料表面产生加工硬化,同时会伴随有脱碳现象。因此,一般将始锻温度控制在固相线以下200℃左右。终端温度控制在PSK线以上60℃左右。合理控制好锻压温度,既可以保证坯料有良好的锻压性能,能够满足预期形状、尺寸精度要求。同时,可以避免加工硬化带来的内应力裂纹、脱碳现象。铁碳合金由含碳量不同被分为碳钢、铸铁两大类材料,铸铁的铸造性能好,强度硬度高属脆性材料。碳钢铸造性能一般,但综合力学性能较铸铁好。因此,对于结构复杂又承受静载荷零件选择铸铁。对于形状复杂而又要求有一定力学性能承受一定量动载荷的零件,可以考虑用碳钢,或者合金钢。